When I give lectures and slideshows about meteorites to rock and mineral societies, museums, and schools, I always enjoy commencing the presentation by passing around a softball-sized iron meteorite. Most people have never held a space rock in their hands and when someone does pick up an iron meteorite for the first time their faces light up and their reaction is, almost without fail, to exclaim: "Wow, it's so heavy!"
Iron meteorites were once part of the core of a long-vanished planet or large asteroid and are believed to have originated within the Asteroid Belt between Mars and Jupiter. They are among the densest materials on earth and will stick very strongly to a powerful magnet. Iron meteorites are far heavier than most earth rocks-if you've ever lifted up a cannon ball or a slab or iron or steel, you'll get the idea.
In most specimens of this group, the iron content is approximately 90 to 95% with the remainder comprised of nickel and trace elements. Iron meteorites are subdivided into classes both by chemical composition and structure. Structural classes are determined by studying their two component iron-nickel alloys: kamacite and taenite.
These alloys grow into a complex interlocking crystalline pattern known as the Widmanstätten Pattern, after Count Aloys de Widmanstätten who described the phenomenon in the 19th Century. This remarkable lattice-like arrangement can be very beautiful and is normally only visible when iron meteorites are cut into slabs, polished, and then etched with a mild solution of nitric acid. The kamacite crystals revealed by this process are measured and the average bandwidth is used to subdivide iron meteorites into a number of structural classes. An iron with very narrow bands, less than 1mm, would be a "fine octahedrite" and those with wide bands would be called "coarse octahedrites."
The largest group of meteorites is the stones, and they once formed part of the outer crust of a planet or asteroid. Many stone meteorites-particularly those that have been on the surface of our planet for an extended period of time-frequently look much like terrestrial rocks, and it can take a skilled eye to spot them when meteorite hunting in the field. Freshly fallen stones will exhibit a black fusion crust, created as the surface literally burned during flight, and the vast majority of stones contain enough iron for them to easily adhere to a powerful magnet.
Some stone meteorites contain small, colorful, grain-like inclusions known as "chondrules." These tiny grains originated in the solar nebula, and therefore pre-date the formation of our planet and the rest of the solar system, making them the oldest known matter available to us for study. Stone meteorites that contain these chondrules are known as "chondrites."
Space rocks without chondrites are known as "achondrites." These are volcanic rocks from space which formed from igneous activity within their parent bodies where melting and recrystallization eradicated all trace of ancient chondrules. Achondrites contain little or no extraterrestrial iron, making them much more difficult to find than most other meteorites, though specimens often display a remarkable glossy fusion crust which looks almost like enamel paint.
This file is a MOST Useful in paper. Please download the paper because this file is use your feature post and practice of all governmane and private job.We provide information about new job like
TALATI PAPER :- CLICKHERE
goverment sector and private sector we also destribute the job related and post vise material like gujarati grammar english grammar history of gujarat history of india maths reasoning science
JAMADAR PAPER :- CLICKHERE
computer gujarati literature indian literature gujarat geography indian geography current affairs .
We also provide information about Talati Junior clerk Senior Clerk SSC GSSEB etc related
RAILWAY PAPER:- CLICKHERE
information and its related material and old paper and model paper. Teacher job and paripatra we also provide. my telegram & whatsapp no 9726905874 add your group for new update and material
VIVIDH PRAKARNA METERS:-CLICKHERE N DOWNLOAD
Iron meteorites were once part of the core of a long-vanished planet or large asteroid and are believed to have originated within the Asteroid Belt between Mars and Jupiter. They are among the densest materials on earth and will stick very strongly to a powerful magnet. Iron meteorites are far heavier than most earth rocks-if you've ever lifted up a cannon ball or a slab or iron or steel, you'll get the idea.
In most specimens of this group, the iron content is approximately 90 to 95% with the remainder comprised of nickel and trace elements. Iron meteorites are subdivided into classes both by chemical composition and structure. Structural classes are determined by studying their two component iron-nickel alloys: kamacite and taenite.
These alloys grow into a complex interlocking crystalline pattern known as the Widmanstätten Pattern, after Count Aloys de Widmanstätten who described the phenomenon in the 19th Century. This remarkable lattice-like arrangement can be very beautiful and is normally only visible when iron meteorites are cut into slabs, polished, and then etched with a mild solution of nitric acid. The kamacite crystals revealed by this process are measured and the average bandwidth is used to subdivide iron meteorites into a number of structural classes. An iron with very narrow bands, less than 1mm, would be a "fine octahedrite" and those with wide bands would be called "coarse octahedrites."
Stone Meteorites
The largest group of meteorites is the stones, and they once formed part of the outer crust of a planet or asteroid. Many stone meteorites-particularly those that have been on the surface of our planet for an extended period of time-frequently look much like terrestrial rocks, and it can take a skilled eye to spot them when meteorite hunting in the field. Freshly fallen stones will exhibit a black fusion crust, created as the surface literally burned during flight, and the vast majority of stones contain enough iron for them to easily adhere to a powerful magnet.
Some stone meteorites contain small, colorful, grain-like inclusions known as "chondrules." These tiny grains originated in the solar nebula, and therefore pre-date the formation of our planet and the rest of the solar system, making them the oldest known matter available to us for study. Stone meteorites that contain these chondrules are known as "chondrites."
Space rocks without chondrites are known as "achondrites." These are volcanic rocks from space which formed from igneous activity within their parent bodies where melting and recrystallization eradicated all trace of ancient chondrules. Achondrites contain little or no extraterrestrial iron, making them much more difficult to find than most other meteorites, though specimens often display a remarkable glossy fusion crust which looks almost like enamel paint.
This file is a MOST Useful in paper. Please download the paper because this file is use your feature post and practice of all governmane and private job.We provide information about new job like
TALATI PAPER :- CLICKHERE
goverment sector and private sector we also destribute the job related and post vise material like gujarati grammar english grammar history of gujarat history of india maths reasoning science
JAMADAR PAPER :- CLICKHERE
computer gujarati literature indian literature gujarat geography indian geography current affairs .
We also provide information about Talati Junior clerk Senior Clerk SSC GSSEB etc related
RAILWAY PAPER:- CLICKHERE
information and its related material and old paper and model paper. Teacher job and paripatra we also provide. my telegram & whatsapp no 9726905874 add your group for new update and material
VIVIDH PRAKARNA METERS:-CLICKHERE N DOWNLOAD